Generalized algorithm for efficient multi-channel data fusion and real-time implementation using wavelet transform

Baltimore, June 25

Hamid Krim, Viraj Mehta

With Clay Gloster (Howard Univ.), Tom Conte (NCSU) and Tom Flatley (GSFC-NASA)

Vision, Information and Statistical Signal Theories and Applications Group (VISSTA)

Outline

- Motivation
- Problem formulation
- Bayesian Estimation for fusion
- Numerical optimization for real-time implementation

Multispectral remote sensing

- Some recent instruments (satellite based)
 - Landsat mission:
 - •Multi-Spectral Scanner (MSS) 4 bands
 - •Thematic Mappers 7 bands
 - Terra:
 - •Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 14 bands
 - •Moderate Resolution Imaging Spectrometer (MODIS) 36 bands
 - <u>■EO-1</u>:
 - Hyperion 220 bands
 - Advanced Land Imager (ALI) 10 bands

Characteristics of sensor measurements

- Sizable acquired data at different resolutions
- •Missing/erroneous data
- Non-stationarity
- •Multispectral/hyperspectral
- •High-resolution (as low as 1m)
- Correlated channels
- Spatial dependencies

Objectives

Data exploitation for analysis and interpretation:

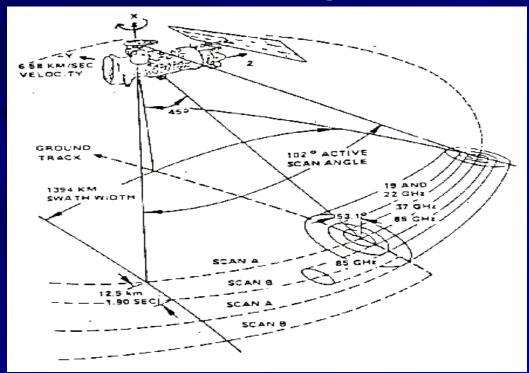
- Coherent & composite image by sensor Fusion
- Enhanced resolution of fused data by Optimal Estimation
- Parsimonious and flexible representation of non-stationary data by Statistical Transformations

Processing guidelines:

- Memory efficiency
- Real-time implementation
- FPGA compatible algorithms
- Minimize communication burden

The SSM/I instrument

Special Sensor Microwave/Imager



Problem: Jointly exploit channels for resolution enhancement

Problem Formulation

•The channel measurements Y are given as:

$$Y = GX + E$$

where

G = The antenna gain function

X = The true underlying temperature field

E = **Measurement** error

•Assuming Gaussian model for X and E, with Bayesian Estimation we have:

$$\hat{\mathbf{X}} = (\mathbf{P}^{-1} + \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{Y}$$

P = *a priori* **Covariance Matrix of X R** = *a priori* **Covariance Matrix of E**

Formulation for SSM/I

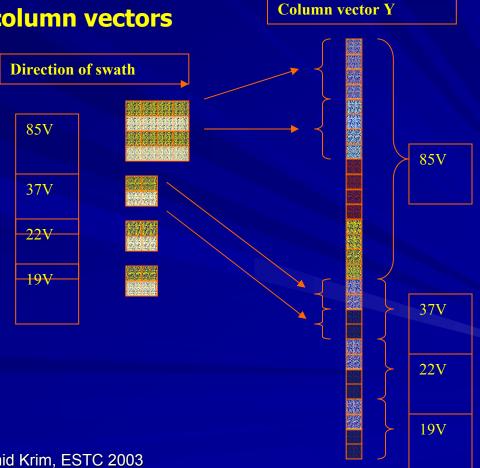
 Format stationarized vertical polarization channels at each frequency from the seven available data channels

Vectorize 2-D data into 1-D column vectors

$$\mathbf{Y}_{85} = \text{Vec}[\mathbf{Y}_{85}]$$

Append all channels

$$\mathbf{Y} = [\mathbf{Y}_{85}, \mathbf{Y}_{37}, \mathbf{Y}_{22}, \mathbf{Y}_{19}]^{\mathrm{T}}$$



Receive Antenna model

Hypotheses

- Local stationarity over 10x10 pixel patches in the 85V channel
- •Estimated field finer in resolution 4 times in each dimension than the 85V channel i.e. pixel width = 12.5/4 = 3.125km
- Each of the four channels has a jointly binomial gain pattern
- Example: Gain pattern for the 85V channel (note implied overlap along track)



Construction of statistical models

Empirically estimate a priori covariance matrices

- P of the field
 - -Challenge from non-stationarity
- R of the measurement error
 - -Use as weights on channels

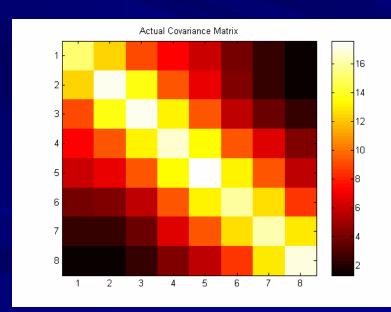
Field prior covariance model

-Assumptions and method

- Use 85V channel
 - -Closest in resolution to underlying field
 - -Channel with least overlap of footprints
 - -No overlap in scan direction
- Windowing
 - -Local stationarity in general
 - -Global stationarity achieved for locally detrended data
 - -Mean normalization over 8x8 shifting window

Field prior covariance model

- -Assumptions and method
- Compute statistics for along scan direction
 - -Fits to exponential model in the anti-diagonal
 - -Only two parameters required to define model





Field prior covariance model

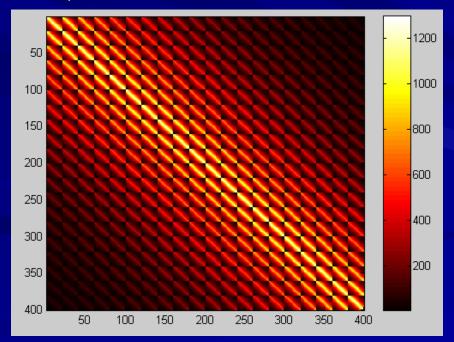
-Assume isotropy

Mathematical model for vectorized data of NxN

$$P(x,y) = C(d) =$$

$$= C(\sqrt{(\lfloor x/N \rfloor - \lfloor y/N \rfloor)^2 + (x - \lfloor x/N \rfloor - y + \lfloor y/N \rfloor)^2})$$

$$= A * exp {-B * \sqrt{(\lfloor x/N \rfloor - \lfloor y/N \rfloor)^2 + (x - \lfloor x/N \rfloor - y + \lfloor y/N \rfloor)^2}}$$



More Generally...

- Observe characteristics of sample data to determine what input channel(s) provide statistical data that is closest to the underlying field and thus has minimum overlap
- Apply statistical normalization (e.g. detrend) to selected data to guarantee the imposed assumptions of stationarity
- Compute the covariance matrix for the relevant input data points
- Construct a field covariance model
- Using model, solve for field estimate of a specified swath length.

Error prior covariance model

-Assumptions

- Zero mean additive white gaussian noise
- Non-correlation and equal variance for given channel
- •For each channel covariance matrix is diag. $\sigma^2 \mathbf{I}$
- •Interpret the error variance as a weighting factor
- Higher error variance for a particular channel implies less reliance on the channel in estimating underlying field

$$|\sigma_4|^2 > \sigma_3|^2 > \sigma_2|^2 > \sigma_1|^2$$

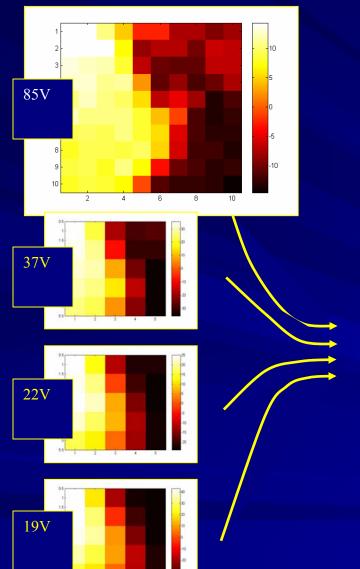
Prior of measurement error

Final Covariance Matrix

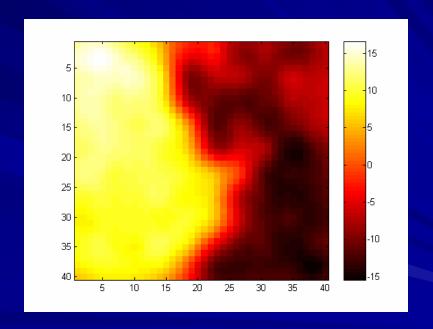
$$\mathbf{R} = \begin{bmatrix} \sigma_1^2 I_{n^2 x n^2} & 0 & 0 & 0 \\ 0 & \sigma_2^2 I_{n^2/4 x n^2/4} & 0 & 0 \\ 0 & 0 & \sigma_3^2 I_{n^2/4 x n^2/4} & 0 \\ 0 & 0 & 0 & \sigma_4^2 I_{n^2/4 x n^2/4} \end{bmatrix}$$

- Zeros indicate assumption of independence of measurement errors of various channels
- Note size dependency on field size for different channels

Direct method experiment



$$\hat{\mathbf{X}} = (\mathbf{P}^{-1} + \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G})^{-1} \mathbf{G}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{Y}$$



Pre-whitening manipulation...

Take Cholesky Factorization of Field priori covariance matrix

$$\mathbf{P} = \mathbf{A}\mathbf{A}^{\mathrm{T}}$$

- •A is a full rank Upper Triangular matrix
- •Let $\mathbf{F}_{\mathrm{W}} = \mathbf{A}^{-1}$
- Rewrite problem statement

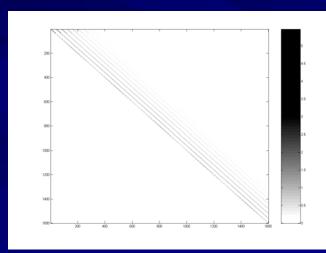
$$\mathbf{Y} = \mathbf{G}\mathbf{F}_{\mathbf{W}}^{-1}\mathbf{F}_{\mathbf{W}}\mathbf{X} + \mathbf{E} \qquad \mathbf{G}_{\mathbf{W}} = \mathbf{G}\mathbf{F}_{\mathbf{W}}^{-1}$$

•The estimation solution now is:

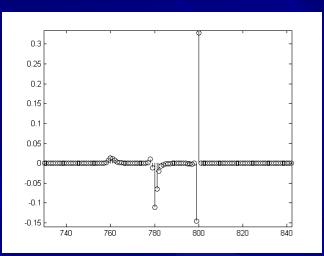
$$\hat{\mathbf{X}}_{\mathrm{W}} = \mathbf{F}_{\mathrm{W}}\hat{\mathbf{X}} = (\mathbf{I} + \mathbf{G}_{\mathrm{W}}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{G}_{\mathrm{W}})^{-1}\mathbf{G}_{\mathrm{W}}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{Y}$$

Pre-whitening transform

■The matrix F_w is in effect a whitening filter.



Inverse filter matrix

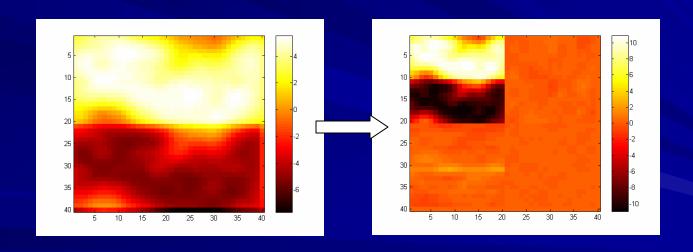


Impulse response of whitening filter

•We use $F_{\rm W}^{-1}$ i.e. ${\bf A}\;$ to "recolor" the estimated quantity as the final step in estimation process

Wavelet/Sparse preconditioning

- Take advantage of sparseness resulting from wavelet transform
- Simplified choice of a suitable wavelet with pre-whitening in place
- Level-1 wavelet decomposition of the estimated quantity (reformatted as 2-D image) using a 2-D Haar wavelet.



Wavelet preconditioning

- •Thus, application of a wavelet transform to the vectorized white data
 - Threshold and preserve significant portion of information
 - Data size reduction by a factor of 4
- Defining

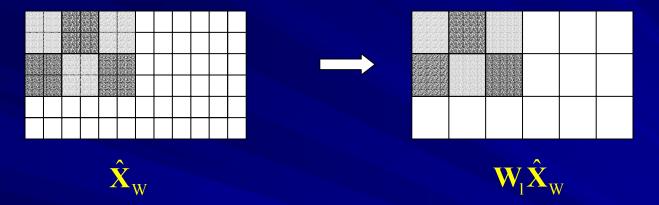
$$\mathbf{X}_{1} = \mathbf{W}_{1} \mathbf{X}_{W} \qquad \mathbf{G}_{1} = \mathbf{G}_{W} \mathbf{W}_{1}^{T}$$

We have

$$\hat{\mathbf{X}}_{1} = \mathbf{W}_{1} \mathbf{F}_{W} \hat{\mathbf{X}} = (\mathbf{I} + \mathbf{G}_{1}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{G}_{1})^{-1} \mathbf{G}_{1}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{Y}$$

Effect of preconditioning

Haar wavelet transform



- •Size reduction of matrices \mathbf{X}_l and \mathbf{G}_l by a factor of 4 in both dimensions
- Significant decrease in computational cost in inverting

$$(\mathbf{I} + \mathbf{G}_1^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{G}_1)^{-1}$$

 Compact representation reduces communication burden for satellites with a small added overhead from preconditioning transforms

Estimation based on

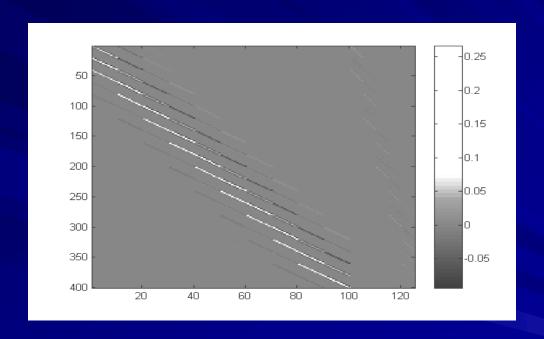
- Decorrelating input channels
- Combination of decorrelated channels
- Reconditioning of combined preconditioned estimation

$$\hat{\mathbf{X}}_{1} = \mathbf{W}_{1} \mathbf{F}_{W} \hat{\mathbf{X}} = (\mathbf{I} + \mathbf{G}_{1}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{G}_{1})^{-1} \mathbf{G}_{1}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{Y}$$

•Consider,

$$\mathbf{M} = (\mathbf{I} + \mathbf{G}_1^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G}_1)^{-1} \mathbf{G}_1^{\mathrm{T}} \mathbf{R}^{-1}$$

Note: only 85V and 37V used for this portion for simplified analysis



$$\mathbf{M} = (\mathbf{I} + \mathbf{G}_1^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G}_1)^{-1} \mathbf{G}_1^{\mathrm{T}} \mathbf{R}^{-1}$$

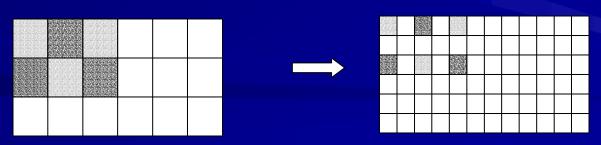
Observations:

$$\mathbf{M} = [\mathbf{M}_{85} \quad \mathbf{M}_{37} \quad \dots]$$

$$\hat{\mathbf{X}}_{1} = \mathbf{M}\mathbf{Y}$$

$$= [\mathbf{M}_{85} \quad \mathbf{M}_{37} \quad \dots] \cdot \begin{bmatrix} \mathbf{Y}_{85} \\ \mathbf{Y}_{37} \\ \dots \end{bmatrix} = \mathbf{M}_{85} \mathbf{Y}_{85} + \mathbf{M}_{37} \mathbf{Y}_{37} + \dots$$

•Input regridding by insertion of zero points



•Modified input:

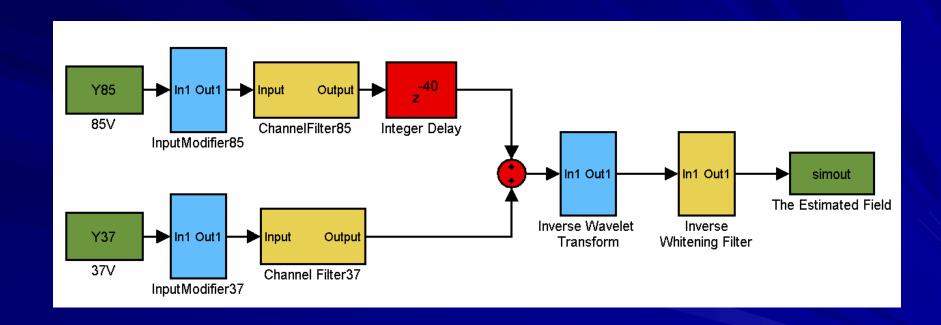
$$Z_{85}, Z_{37}, ...$$

- Modified operators are channel filters
- Resulting estimation process:

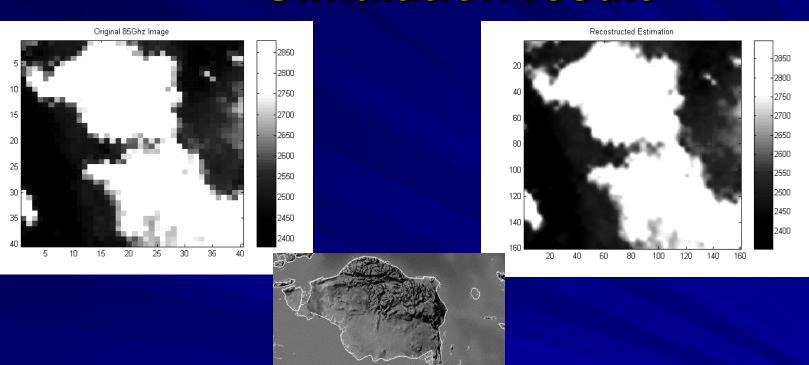
$$\therefore \mathbf{X}_1 = \mathbf{F}_{85} \mathbf{Z}_{85} + \mathbf{F}_{37} \mathbf{Z}_{37} + \dots$$

$$X_1 = \mathbf{f}_{85} * \mathbf{Z}_{85} + \mathbf{f}_{37} * \mathbf{Z}_{37} + \dots$$

Block diagram



Simulation result



Comparison of original input 85GHz data with reconstructed estimation fusion result

Conclusions

- ✓ An optimal Bayesian estimator for data/sensor fusion developed
- ✓ Empirical analytical models may be constructed and utilized in improving computing efficiency
- ✓ Further improvement and potential near- or real time implementation
- ✓ Simplified and adapted algorithmic architecture for Hardware transitioning

Future Work

- Efficient adaptation to non-stationarity
 - Real-time empirical estimation of covariance model parameters
 - Input data from 85V channel may be used on account of least overlap direction and isotropy
 - Prediction based on feedback from estimated underlying field
- Adapting to instrumental errors
 - Adaptively control the variance of error measurement for every channel in the error covariance matrix
- Investigate other data (e.g. Hyperion data)

Thank You!